Biofuels And Bioenergy Processes And Technologies Green Chemistry And Chemical Engineering | 389bf2f46290a5c9d21f2cc781ade76

Processes and Technologies in Biofuels and Bioenergy: Advanced Biofuel Technologies

Biomass as a Sustainable Energy Source for the Future

Handbook of Algal Biofuels: Aspects of Cultivation, Conversion and Biorefinery comprehensively covers the cultivation, harvesting, conversion and utilization of algae for biofuels. Section cover algal diversity and composition, micro- and macroalgal diversity, classification and composition, their cultivation, biotechnological applications, and their current use in industry in biofuels and value-added products. Other sections address algal biofuel production, presenting detailed guidelines and protocols for the production of biodiesel, biogas, bioethanol, biobutanol and biohydrogen, along with thermochemical conversation techniques and integrated approaches for enhanced biofuel production. This book offers an all-in-one resource for researchers, graduate students and industry professionals working in the area of biofuels and phytoplankton. It will be of interest to engineers working in Renewable Energy, Bioenergy and alternative fuels, Biotechnology, and Chemical Engineering. Provides complete coverage of the biofuel production process, from cultivation to biorefinery. Includes a detailed discussion of process intensification, lifecycle analysis and biofuel byproducts. Describes key aspects of algal diversity and composition, including their cultivation, harvesting and advantages over conventional biomass.

The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon)

Rational fuel research and process development requires interdisciplinary approaches involving chemists and physicists from both scientific and engineering backgrounds. Here is an important volume that emphasizes green chemistry and green engineering principles for sustainable process development from an interdisciplinary point of view. It creates an enriching knowledge base on green chemistry of biofuel production, sustainable process development, and green engineering principles for renewable fuel production. This book includes chapters contributed by both research scientists and research engineers with significant experience in biofuel chemistry and processes. The book offers an abundance of scientific experimental methods and analytical procedures and interpretation of the results that capture the state-of-the-art knowledge in this field. The wide range of topics make this book a valuable resource for academicians, researchers, industrial practitioners and scientists, and engineers in various renewable energy fields. Key features: Emphasizes green chemistry and green engineering principles for sustainable process development for biofuel production Discusses a wide array of biofuels from algal biomass to waste-to-energy technologies and wastewater treatment and activated sludge processes Presents advances and developments in biofuel green chemistry and green engineering, including process intensification (microwaves/ultrasound), ionic liquids, and green catalysis Looks at environmental assessment and economic impact of biofuel production

Handbook of Algal Biofuels

This book aims to understand the processes and technologies involved in the fields of bioenergy and biofuels. It contains important chapters that discuss the most vital concepts and emerging trends in this area of study. Biofuels and bioenergy became the focal point for researchers while they were searching for alternative sources of energy other than the existing non-renewable sources. As the already existing resources are limited, biofuels can be termed as one of the substitutes. They are available in forms such as biodiesel and bioethanol. Considerable amount of research is going on this area to produce cleaner fuels with high efficiency for example ethanol biofuels, algae biofuels, jatropha tree oil, etc. The various sub-fields of bioenergy along with technological progress that have future implications are glanced at in this book. Scientists, engineers, environmentalists, climatologists, researchers and students actively engaged in this field will find this book full of crucial and unexplored concepts.

Bioenergy and Biomass processing. An overview

Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, Second Edition, provides general information, basic data and knowledge on one of the most promising renewable energy sources—liquid and gaseous biofuels—and their production and application. The book delineates green technologies for abating environmental crisis and enabling the transformation into a sustainable future. It
Get Free Biofuels And Bioenergy Processes And Technologies Green Chemistry And Chemical Engineering

provides date-based scientific information on the most advanced and innovative technology on biofuels, as well as the process scale-up and commercialization of various liquid and gaseous biofuels, detailing the functional mechanisms involved, various operational configurations, influencing factors and integration strategies. All chapters have been updated, with new chapters covering topics of current interest, including sustainability and biohydrogen. Presents a holistic view of biofuels in research, operation, scale-up and application Widens the scope of the existing technologies, providing state-of-the-art information and knowledge Provides strategic integrations of various bioprocesses that are essential in establishing a circular biorefinery. Contains interdisciplinary knowledge on the environment, molecular biology, engineering, biotechnology, microbiology, and economic aspects Integrates various subjects, including biotechnology, bioengineering, molecular biology, environmental science, sustainability science and chemical engineering.

Green Chemistry for Sustainable Biofuel Production

Lignocellulosic Biomass to Liquid Biofuels explores the existing technologies and most recent developments for the production of second generation liquid biofuels, providing an introduction to lignocellulosic biomass and the processes for its conversion into biofuels. The book demonstrates biorefinery concepts compared with petro refinery, as well as the challenges of second generation biofuels processing. In addition to current pre-treatment techniques and their technical, environmental and economic implications, chapters included also further examine the particularities of conversion processes for bioethanol, biobutanol and biodiesel through chemical, biochemical and combined approaches. Finally, the book looks into concepts and tools for techno-economic and environmental analysis, which include supply chain assessment, by-products, zero-waste techniques and process evaluation and optimization. Lignocellulosic Biomass to Liquid Biofuels is particularly useful for researchers in the field of liquid biofuels seeking alternative chemical and biochemical pathways or those interested advanced methods to calculate maximum yield for each process and methods to simulate the implications and costs of scaling up. Furthermore, with the introduction provided by this volume, researchers and graduate students entering the field will be able to quickly get up to speed and identify knowledge gaps in existing and upcoming technology. The book's comprehensive overview. Examines the state-of-the-art technology for liquid biofuels production from lignocellulosic biomass. Provides a comprehensive overview of the existing chemical and biochemical processes for second generation biofuel conversion. Presents tools for the techno-economic and environmental analysis of technologies, as well as for the scale-up simulation of conversion processes.

Biofuels Production Sustainability and Advances in Microbial Bioresources

The edited volume presents the progress of first and second generation biofuel production technology in selected countries. Possibility of producing alternative fuels containing biocomponents and selected research methods of biofuels exploitation characteristics (also aviation fuels) was characterized. The book shows also some aspects of the environmental impact of the production and biofuels using, and describes perspectives of biofuel production technology development. It provides the review of biorefinery processes with a particular focus on pretreatment methods of selected primary and secondary raw materials. The discussion includes also a possibility of sustainable development of presented advanced biorefinery processes.

Bioenergy and Biofuels

Bioenergy can be used to produce renewable electricity, thermal energy, transportation fuels (biofuels), and high-value functional chemicals. As an energy source, biomass can be used either directly via combustion to produce heat or indirectly after it is converted to one of many forms of bioenergy and biofuel via thermochemical or biochemical pathways. The conversion of biomass can be achieved using various advanced methods, which are broadly classified into thermochemical conversion, biochemical conversion, electrochemical conversion, and so on. Advanced development technologies and processes are able to convert biomass into alternative energy sources in solid (e.g., charcoal, biochar, and RDF), liquid (biodiesel, algae biofuel, bioethanol, and pyrolysis and liquefaction bio-oils), and gaseous (e.g., biogas, syngas, and biohydrogen) forms. Because of the merits of biomass energy for environmental sustainability, biofuel and bioenergy technologies play a crucial role in renewable energy development and the replacement of chemicals by highly functional biomass. This book provides a comprehensive overview and in-depth technical research addressing recent progress in biomass conversion processes. It also covers studies on advanced techniques and methods for bioenergy and biofuel production.

Biofuels

Bioenergy: Biomass to Biofuels and Waste to Energy, 2nd Edition presents a complete overview of the bioenergy value chain, from feedstock to end products. It examines current and emerging feedstocks and advanced processes and technologies enabling the development of all possible alternative energy sources. Divided into seven parts, bioenergy gives thorough consideration to topics such as feedstocks, biomass production and utilization, life-cycle analysis, energy return on invested, integrated sustainability assessments, conversions technologies, biofuels economics, business, and policy. In addition, contributions from leading industry professionals and academics, augmented by related service-learning case studies and quizzes, provide readers with a comprehensive resource that connect theory to real-world implementation. Bioenergy: Biomass to Biofuels and Waste to Energy, 2nd Edition provides engineers, researchers, undergraduate and graduate students, and business professionals in the bioenergy field with valuable, practical information that can be applied to implementing renewable energy projects, choosing among competing feedstocks, technologies, and products. It also serves as a basic resource for civic leaders, economic development professionals, farmers, investors, fleet managers, and reporters interested in an organized introduction to the language, feedstocks, technologies, and products in the biobased renewable energy world. It includes current and renewed subject matter, project case studies and techniques, and technical sections on the impacts of biomass use for energy production from all sorts of biomass feedstocks including organic waste of all kinds. It provides a comprehensive overview and in-depth technical information of all possible bioenergy resources: solid (wood energy, grass energy, waste, and other biomass), liquid (biodiesel, algae biofuel, ethanol, waste to oils, etc.), and gaseous/electric (biogas, syngas, biopower, RNG), and cutting-edge topics such as advanced fuels. It integrates current state of art coverage on feedstocks, cost-effective conversion processes, biofuels economic analysis, environmental policy, and triple bottom line. Features quizzes for each section derived from the implementation of actual hands-on biofuel projects as part of service learning.

Biofuels for a More Sustainable Future

Oil price increases have also increased the level of interest in bioenergy. The rapid rise in the price of crude oil, the decrease in oil reserves, security concerns and greater recognition of the environmental impacts of fossil fuels have generated considerable interest in biofuels as an alternative energy source. Bioenergy is already making a substantial contribution to meeting global energy demand. This contribution can be expanded very significantly in the future, providing greenhouse gas savings and other environmental benefits, as well as contributing to energy security, improving trade balances, providing opportunities for social and economic development in rural communities, and improving the management of resources and wastes. The revolution in transportation that occurred at the beginning of the last century created dependence of Western economies on the combustion of hydrocarbon fuels. Alternative energy sources have become a hot topic in recent years. The supply of fossil fuel, which provides about 95 percent of total energy demand today, will eventually run out in a few decades. By contrast, biomass and biofuel have the potential to become one of the major global primary energy sources along with other alternative energy sources in the years to come. A wide range of additional conversion technologies are under development, offering prospects of improved efficiencies, lower costs and improved environmental performance. Biofuels and Bioenergy Processes and Technologies presents the selected topics on characterization, production, and uses of bioenergy, biofuels, and coproduces. It gives an overview of the amount of energy that can be harvested from the sun for contemporary biomass production, both for food and for bioenergy. This book is intended to provide the readers with current state of art about biomass and bioenergy production and some other environmental
technologies such as Wastewater treatment, biosorption and bio-economics, providing recent methodology, current state of modelling and techniques of parameter estimation in gasification process are also presented. Providing an insight into future developments in each field and extensive bibliography, this book will be an essential resource for researchers and academic and industry professionals for reviewing the current state of knowledge on biomass and bioenergy production.

Bioenergy Research: Advances and Applications

Value-Chain of Biofuels: Fundamentals, Technology, and Standardization presents the fundamental aspects of biofuel production, from biomass conversion technologies and biofuels - end products to related policy regulation and standardization. Sections explore the current biofuels industry, addressing pretreatment, feedstocks, and conversion processes, review different pathways to produce biofuels, including bioethanol, biochar, biogas/bio-hydrogen, bio-oil, biodiesel, and many others, and finally, present policy regulation and standardization on biofuel production, with a focus on applications. Case studies are provided alongside reviews from academic and industry perspectives, discussing economics and lifecycle assessments (LCA) of biofuel production, as well as analyses of supply chains. Offering a comprehensive and timely overview, this book provides an ideal reference for researchers and practitioners working in bioenergy and renewable energy, but it will also be of interest to chemists, bioengineers, chemical engineers, and the agricultural and petrochemical industries. Helps readers gain academic and industry perspectives on biofuel production with the inclusion of lab-based experimentation and informative case studies Contains an exhaustive analysis of biomass conversion technologies for biofuels and biochemicals Provides a clear and concise text that avoids the overuse of jargon and technical language

Fundamentals of Biofuel Production Processes

The worldwide consumption of fossil fuel continues to increase at unsustainable levels, which will lead to progressive scarcity, if immediate and innovative measures are not taken for its sustainable use. This scarcity necessitates the development of renewable and sustainable alternatives for fossil fuels. A possible solution to today's energy challenges can be provided by biofuels. This book intends to provide the reader with a comprehensive overview of the current status and the future implications of biofuels. Diverse and aptly covered comprehensive information in this book will directly enhance both basic and applied research in biofuels and will particularly be useful for students, scientists, breeders, growers, ecologists, industrialists and policy makers. It will be a valuable reference point to improve biofuels in the areas of ecologically and economically sustainable bioenergy research.

Biofuels Production and Processing Technology

The development of renewable and sustainable lignocellulosic biofuels is currently receiving worldwide attention and investment. Despite decades of research, there remain significant challenges to be overcome before these biofuels can be produced in large volumes at competitive prices. One obstacle is the lack of efficient and affordable catalytic systems to dissolve and hydrolyze polysaccharides into sugars. These sugars are then fed to microorganisms and fermented into biofuels. The price of these catalysts, be they biological, thermochemical, or chemical in nature, represent one of the largest costs in the conversion process. There are a number of catalytic schemes, each with their own advantages and disadvantages, available. This book presents a general yet substantial review of the most promising processes and the spectrum of biomass pretreatment, enzymes, chemical catalysts, and hybrid approaches of hydrolyzing biomass into fermentable sugars. It is the only currently available book that compares the biochemical, chemical, and thermochemical conversion processes to biofuel production.

Biofuel and Bioenergy Technology

Focusing on fundamentals of biofuel production from renewable energy sources and biohydrogen production, this book offers a complete understanding of the bioconversion processes. Each chapter begins with a fundamental explanation for general readers and ends with in-depth scientific details suitable for expert readers. It discusses different types of production technologies covering basic concepts, production strategies, commercial usage, and advances.

Biomass, Biofuels, Biochemicals

Biofuels and Bioenergy: A Techno-Economic Approach provides an in-depth analysis of the economic aspects of biofuels production from renewable feedstock. Taking a biorefinery approach, the book analyzes a wide range of feedstocks, processed into biofuels, with a focus on the overall efficiency and sustainability of biofuel production. The range of biofuels has also increased to supplement bioethanol and biodiesel with syngas, biohydrogen, biobutanol, biogas and other biofuels. This book offers valuable insights into the commercial feasibility of biofuels products for researchers and students working in the area of bioenergy and renewable energy, but it is also ideal for practicing engineers in the bioenergy and biofuel industry who are looking to develop commercial products. Focused on an in-depth, techno-economic analysis of biofuel and bioenergy products, including all important feedstocks, processes and products, all of which are supported by industry case studies Includes environmental impacts and lifecycle assessments of biofuels production alongside techno-economic analyses Provides a critical guide to assessing the commercial viability and feasibility of bioenergy production from renewable sources

Advances in Biofuels and Bioenergy

In response to the global increase in the use of biofuels as substitute transportation fuels, advanced chemical, biochemical and thermochemical biofuels production routes are fast being developed. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The range of biofuels has also increased to supplement bioethanol and biodiesel production, with market developments leading to the increased production and utilisation of such biofuels as biosyngas, biohydrogen and biobutanol, among others. Handbook of biofuels production provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Part one reviews the key issues in the biofuels production chain, including feedstocks, sustainability assessment and policy development. Part two reviews chemical and biochemical conversion in turn Part three reviews thermal and thermo-chemical conversion, with both sections detailing the wide range of processes and technologies applicable to the production of first, second and third generation biofuels. Finally, Part four reviews developments in the integration of biofuels production, including biorefineries and by-product valorisation, as well as the utilisation of biofuels in diesel engines. With its distinguished international team of contributors, Handbook of biofuels production is a standard reference for biofuels production engineers, industrial chemists and biochemists, plant scientists, academics and researchers in this area. A comprehensive and systematic reference on the range of biomass conversion processes and technologies Addresses the key issues in the biofuels production chain, including feedstocks, sustainability assessment and policy development Reviews chemical and bio-chemical conversion techniques as well as thermal and thermo-chemical conversion, detailing the range of processes and technologies applicable to biofuels production

Biofuels and Bioenergy
Biomass use is growing globally. Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-based materials which are specifically called lignocellulosic biomass. Biomass (organic matter that can be converted into energy) may include food crops, crops for energy, crop residues, wood waste and byproducts, and animal manure. It is one of the most plentiful and well-utilized sources of renewable energy in the world. Broadly speaking, it is organic material produced by the photosynthesis of light. The chemical materials (organic compounds of carbons) are stored and can then be used to generate energy. The most common biomass used for energy is wood from trees. Wood has been used by humans for producing energy for heating and cooking for a very long time. As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Biomass gasification is the conversion of solid fuels like wood and agricultural residues into a combustible gas mixture. The gasification system basically consists of a gasifier unit, a purification system and energy converters- burner or engine. This book offers comprehensive coverage of the design and analysis of biomass gasification, the key technology enabling the production of biofuels from all viable sources like sugar beet and sweet sorghum. It aims at creating an understanding of the nature of biomass resources for energy and fuels the variety of processes that are available for conversion of the wastes into energy or fuels. The book discusses the overview of the Biomass Energy along with their Properties, Composition, Benefits, Characteristics and Manufacturing Process of Biomass based products. Also it contains suppliers contact details of plant & machinery with their photographs. The content includes biomass renewable energy, prospective renewable resources for bio-based processes, biochemical from biomass, biomass based chemicals, biofuel production from biomass crops, biomass gasification, reuse of biogenic iron oxides and woody biomass fly ash in cement based materials and agricultural areas, biofuel briquettes from biomass, biomass based activated carbon, environmental aspects. It will be a standard reference book for Professionals, Decision-makers, Engineers, those studying and researching in this important area and others interested in the field of biomass based products. Professionals in academia and industry will appreciate this comprehensive and practical reference book, due to its multidisciplinary nature.

Handbook of Biofuels Production

Recent Developments in Bioenergy Research reviews all these topics, reports recent research findings, and presents potential solutions to challenging issues. The book consolidates the most recent research on the (bio)technologies, concepts and commercial developments that are currently in progress on different types of widely-used biofuels and integrated biorefineries across biochemistry, biotechnology, environmental engineering and microbiology. Chapters include very recent/emerging topics, such as non-ionic and ionic liquids/surfactants for enhancement of lignocellulosic enzymatic hydrolysis and lignocellulose biomass as a rich source of bio-ionic liquids. The book is a useful source of information for those working in the area of- industrial wastewater treatment and microbial fuel cells, but is also a great resource for senior undergraduate and graduate students, researchers, professionals, biochemical engineers and other interested individuals/groups working in the field of biofuel/bioenergy. Provides unique information on biomass-based biofuels for fundamental and applied research Outlines research advancements in the areas of bio-hydrogen, bioethanol, bio-methane and bio-refineries Includes emerging topics on biomass (including wastes) characterization and its uses as a resource for environmental bioremediation and bioenergy. Reviews enzyme engineering for biomass to bioproducts and biochemicals, lipids/bio-oil Focuses on biological/ biochemical routes, as these options have the greatest potential to be the most cost-effective methods for biofuel/bioenergy production

Innovations in Thermochemical Technologies for Biofuel Processing

Biofuels for a More Sustainable Future: Life Cycle Sustainability Assessment and Multi-criteria Decision Making provides a comprehensive sustainability analysis of biofuels based on life cycle thinking and develops various multi-dimensional decision-making techniques for prioritizing biofuel production technologies. Taking a transversal approach, the book combines life cycle sustainability assessment, life cycle assessment, life cycle costing analysis, social life cycle assessment, sustainability metrics, triple bottom line, operations research methods, and supply chain design for investigating the critical factors and key enablers that influence the sustainable development of biofuel industry. This book will equip researchers and policymakers in the energy sector with the scientific methodology and metrics needed to develop strategies for viable sustainability transition. It will be a key resource for students, researchers and practitioners seeking to deepen their knowledge on energy planning and current and future trends of biofuel as an alternative fuel. Provides an innovative approach to promoting sustainable development in biofuel production by linking supply chain design and decision support with the life cycle perspective. Case studies and examples that illustrate the theory and methods developed includes material on corporate social responsibility and economic analysis of biofuels that is highly useful to policy-makers and administrators in both government and enterprise sectors

Lignocellulosic Biomass to Liquid Biofuels

Advanced Biofuel Technologies: Present Status, Challenges and Future Prospects deals with important issues such as feed stock availability, technology options, greenhouse gas reduction as seen by life cycle assessment studies, regulations and policies. This book provides readers complete information on the current state of developments in both thermochemical and biochemical processes for advanced biofuels production for the purpose of transportation, domestic and industrial applications. Chapters explore technological innovations in advanced biofuels produced from agricultural residues, algae, lipids and waste industrial gases to produce road transport fuels, biojet fuel and biogas. Covers technologies and processes of different types of biofuel production Outlines a selection of different types of renewable feedstocks for biofuel production Summarizes adequate and balanced coverage of thermochemical and biochemical methods of biomass conversion into biofuel Includes regulations, policies and lifecycle and techno-economic assessments

Recent Developments in Bioenergy Research

Details energy and exergy efficiencies of all major aspects of bioenergy systems Covers all major bioenergy processes starting from photosynthesis and cultivation of biomass feedstocks and ending with final bioenergy products, like power, biofuels, and chemicals Each chapter includes historical developments, chemistry, major technologies, applications as well as energy, environmental and economic aspects in order to serve as an introduction to biomass and bioenergy. A separate chapter introduces a beginner in easy accessible way to exergy analysis and the similarities and differences between energy and exergy efficiencies are underlined Includes case studies and illustrative examples of 1st, 2nd, and 3rd generation biofuels production, power and heat generation (thermal plants, fuel cells, boilers), and biorefineries. Traditional fossil fuels-based technologies are also described in order to compare with the corresponding bioenergy systems

Biofuels

Biofuels and Bioenergy: Opportunities and Challenges is the first of two volumes that address the technological developments and challenges in the production of a broad range of biofuels and bioenergy products from renewable feedstock. The book emphasizes the opportunities and challenges involved in various processes including fermentation, transesterification, microbial fuels cells, liquefaction, gasification, and pyrolysis. These are also considered from a biorefinery perspective and discuss all common biomass feedstocks. In addition, the book presents new research on microalgae from waste water treatment, large scale production of microalgae, microbial biooil production, biogas production, computational tools for manipulation of metabolic pathways for enhanced biogas production, production of biofuel from genetically modified microalgae, economic analysis, environmental impact and life cycle analysis. Biofuels and Bioenergy is an ideal reference for the latest research for researchers and students working in the area of biofuels and renewable energy. Addresses biological and chemical methods of biofuel and bioenergy production Provides industry case studies alongside in-depth techno-economic analysis, environmental impact, and life cycle assessment of biofuels production Focuses on the commercial viability of production processes.
Biofuels Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels: production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. Provides systematic and detailed coverage of the processes and technologies being used for biofuel production Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage Reviews the production of both first and second generation biofuels Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks

Waste-to-Energy Approaches Towards Zero Waste

This book focuses on the different kinds of biofuels and biofuel resources. Biofuels represent a major type of renewable energy. As part of a larger bio-economy, they are closely linked to agriculture, forestry, and manufacturing. Biofuels have the potential to improve regional energy access, reduce dependence on fossil fuels and contribute to climate protection. Further, this alternative form of energy could revitalize the forestry and agricultural sector and promote the increased use of renewable resources as raw materials in a range of industrial processes. Efforts are continuously being made to develop economically competitive biofuels, and microbes play important roles in the production of biofuels from various bioresources. This book elaborates on recent advances in existing microbial technologies and on sustainable approaches to improving biofuel production processes. Additionally, it examines trends in, and the limitations of, existing processes and technologies. The book offers a comprehensive overview of microbial bioresources, microbial technologies, advances in bioconversion and biorefineries, as well as microbial and metabolic engineering for efficient biofuel production. Readers will also learn about the environmental impacts and the influence of climate change on the sustainability of biofuel production. This book is intended for researchers and students whose work involves biorefinery technologies, microbiology, biotechnology, agriculture, environmental biology and related fields.

Bioenergy and Biomass from Biowastes and Biomass

Focusing on the conversion of biomass into gas or liquid fuels the book covers physical pre-treatment technologies, thermal, chemical and biochemical conversion technologies Details the latest biomass characterization techniques Explains the biochemical and thermochemical conversion processes Discusses the development of integrated biorefineries, which are similar to petroleum refineries in concept, covering such topics as reactor configurations and downstream processing Describes how to mitigate the environmental risks when using biomass as fuel Includes many problems, small projects, sample calculations and industrial application examples

Hydrocarbon Biorefinery

This book aims to inform readers about the recent developments in bioenergy and biofuels covering current issues from an interdisciplinary approach. It will also feature coverage of anticipated future trends related to each particular biofuel. Chapters will consist of original research presented by world class experts in their respective fields. A number of interdisciplinary areas will be incorporated such as Energy & Fuels, Biotechnology, Genomics, Economics, Optimization, Chemical Engineering, Mechanical Engineering and Algae Science. Examples will relate to a matrix of biofuel and energy types such as bioethanol, biobutanol, and biomethane.

Value-Chain of Biofuels

Production and utilization of sustainable energy toward maintaining a clean environment is a major challenge. At the same time, the continued depletion of fossil fuels and the global dependency on non-renewable fuels is a chief concern. Moreover, the long-term economic and environmental issues associated with the high utilization of fossil fuel, such as global warming, are also important, particularly in the context of the predicted increase in the global population to around 5 billion by 2050. In recent years, researchers have been investigating alternative, renewable fuels to replace fossil fuels. Of the various options, biofuels are especially attractive due to their low production costs and the fact that they are pollution free. Also known as transportation fuels, their energy is derived from biological resources or through the biological processes. Biofuels such as biohydrogen, biomethane, biogas, ethanol and butanol offer a number of advantages and can be economically produced from cellulosic biomass. As such, they can play a vital role in sustainably meeting future energy demands. Biofuels have the potential to become a global primary energy source, offering significant reductions in greenhouse gas emissions as well as opportunities to increase economic and social development in rural communities and reduce the problems associated with waste disposal. However, low yields and lack of process technology are some of the aspects that need to be addressed. This book offers an overview of existing biofuels and the technologies to solve the problems associated with their practical implementation. Evaluating the biofuel options and discussing the opportunities and risks in relation to the sources, technologies, practices, markets and policy, it provides insights into the development of economically viable bioenergy industries.

Handbook of Biofuels Production

Waste-to-Energy Approaches Towards Zero Waste: Interdisciplinary Methods of Controlling Waste provides a comprehensive overview of the key technologies and approaches to achieve zero waste from energy. The book emphasizes the importance of an integrated approach to waste-to-energy using fundamental concepts and principles, and presents key methods, their applications, and perspectives on future development. The book provides readers with the tools to make key decisions on waste-to-energy projects from zero-waste principles, while incorporating sustainability and life cycle assessments from financial and environmental perspectives. Waste-to-Energy Approaches Towards Zero Waste: Interdisciplinary Methods of Controlling Waste offers practical guidance on achieving energy with zero waste ideal for researchers and graduate students involved in waste-to-energy and renewable energy, waste remediation, and sustainability. Provides an integrated approach for waste-to-energy using zero waste concepts Offers decision-making guidance on selecting the most appropriate approach for each project Presents the sustainability and life cycle assessment of WTE technologies on financial and environmental grounds

Bioenergy

Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts
in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each

Chemical and Biochemical Catalysis for Next Generation Biofuels

The subject of this book is biofuels and biocatalysts. It aims to publish high-quality review and research papers, addressing recent advances in biofuel and bioenergy. State-of-the-art studies of advanced techniques of biocatalysis for biofuel production are also included. Research involving experimental studies, recent developments, and novel and emerging technologies in this field are covered. This book contains twenty-seven technical papers which cover diversified biofuel and biocatalysis technology-related research that have shown critical results and contributed significant findings to the fields of biomass processing, pyrolysis, bio-oil and its emulsification; transesterification and biodiesel, gasification and syngas, fermentation and biogas/methane, bioethanol and alcohols-based fuels, solid fuel and biochar, and microbial fuel cell and power generation development. The published contents relate to the most important techniques and analyses applied in the biofuel and bioenergy technology.

Biomass Processing for Biofuels, Bioenergy and Chemicals

"Biofuels" provides state-of-the-art information on the status of biofuel production and related aspects. It includes a detailed overview of the alternative energy field and the role of biofuels as new energy sources, and gives a detailed account of the production of biodiesel from non-conventional bio-feedstocks such as algae and vegetable oils.

Efficiency of Biomass Energy

Biofuel and bioenergy produced from biowastes and biomass is a clean energy source which can be produced renewably. The 21 chapters of this book provide state-of-the-art reviews, current research, and technology developments with respect to 1st, 2nd, and 3rd generation biofuels and bioenergy. The book focuses on the biological/ biochemical pathway, as this option has been reported to be the most cost-effective method for biofuel/bioenergy production. The opening chapter covers the overview of the current status of biofuel and bioenergy production. The rest of the chapters are grouped into seven categories; they cover biomethane production, microbial fuel cells, feedstock production, preprocessing, biomass pretreatment, enzyme hydrolysis, and syngas fermentation. Algal processes for biofuel production, biobutanol production, bioreactor systems, and value-added processing of biofuel residues are included. This book addresses life cycle analysis (LCA) of 1st and 2nd generation biofuels (from corn, soybean, jatropha, and cellulose biomass) and the emerging applications of nanotechnology in biofuel/bioenergy production. The book is organized in such a way that each preceding chapter builds a foundation for the following one. At the end of each chapter, current research trends and further research needs are outlined. This is one of the first books in this emerging field of biofuel/bioenergy that provides in-depth technical information on the broad topics of biofuel and bioenergy with extensive illustrations, case studies, summary tables, and up-to-date references. This book will be valuable to researchers, instructors, senior undergraduate and graduate students, decision-makers, professionals, and others interested in the field of biofuel/bioenergy.

Biofuels and Bioenergy

Biomass is a widely available resource, that can be characterized by its high production potential. Enabling the production of different types of biofuels, biomass can be used in both spark-ignition and compression-ignition engines. There is extensive knowledge of the biofuel production process, and technologies enabling the production of biofuels with high caloric value and better physicochemical properties are developed. The biggest barrier in the development of a biofuels market is not the lack of know-how, but economic and political aspects. Biomass for Biofuels presents technological aspects of biomass conversion into advanced biofuels. Also discussed are the influence of growing biofuels markets on the natural environment and social relations as well as economic aspects of acquisition of biomass and its processing into biofuels. In addition biomass characteristics are presented. A definition is provided, and its chemical composition and properties detailed. The focus is on lignocellulosic biomass, whose complex structure is a limiting factor for biofuels production via biological processes. For that reason, echnical, chemical and physicochemical methods that enable an increased availability for the microorganisms used for biomass conversion to biofuels are discussed.

Biofuels and Bioenergy

Sustainable production of hydrocarbon biofuels from biomass, fuels that are fully compatible with existing internal combustion engines, will allow the global transport economy to transition to a sustainable energy source without the need for capital-intensive new infrastructures. Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels presents a comprehensive and easy to understand consolidation of existing knowledge for the production of hydrocarbon biofuels. The three major areas for the conversion of biomass to hydrocarbon biofuels are addressed: i) Chemical and thermochemical conversion processes, ii) Biological and biochemical conversion processes, and iii) Conversion processes of biomass-derived compounds. Additionally, the book includes process design, life cycle analysis of various processes, reaction engineering, catalysts, process conditions and process concepts, and is supported with detailed case studies. The economic viability of each process is specifically addressed to provide a clear guide for the economic development of future hydrocarbon biofuels. Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels offers an all-in-one resource for researchers, graduate students, and industry professionals working in the area of bioenergy and will be of interest to energy engineers, chemical engineers, bioengineers, chemists, agricultural researchers, and mechanical engineers. Furthermore, this book provides structured foundational content on biofuels for undergraduates and graduate students. Presents fundamental concepts and processes of hydrocarbon biofuel production, covering chemical, biotechnological, and biomass-derived conversion processes. Synthesizes the state-of-the-art research and commercial technology of this emerging concept into stand-alone chapters, serving as a structured resource for researchers and practitioners Emphasizes the process design and economic feasibility of each process using life cycle assessments to support commercial development

Biofuels and Bioenergy

Handbook of Biofuels looks at the many new developments in various type of bioenergy, along with the significant constraints in their production and/or applications. Beyond introducing current approaches and possible future directions of research, this title covers sources and processing of raw materials to downstream processing, constraints involved and research approaches to address and overcome these needs. Different combinations of products from the biorefinery are...
Biofuels and Bioenergy Processes and Technologies

This book fulfills a long needed review of bio-mass conversion to supply the needs of the energy and fuels sector of our society. The current state of the conversion of bio-mass to energy and fuels is covered in a comprehensive way. Requirements for future process developments to ensure economic viability are clearly stated. After an overview of the subject, the book discusses crop oils, biodiesel, and algae fuels. It examines ethanol from corn and from lignocellulosicsthe and then explores fast pyrolysis and gasification of biomass. Discussing the future of biofuel production, it also describes the conversion of waste to biofuels, bioproducts, and bioenergy and concludes with a discussion of mixed feedstock. Written for readers with college-level backgrounds in chemistry, biology, physics, and engineering, this reference explores the science and technology involved in developing biofuels and bioenergy. It addresses the application of these and other disciplines, covering key issues of special interest to fuel process engineers, fuel scientists, and energy technologists, among others.

Handbook of Biofuels

Innovations in Thermochemical Technologies for Biofuel Processing broadly covers current technologies in alternate fuels and chemical production, a few of which include biomass-to-liquid, biomass-to-gas and gas-to-liquid biomass conversion technologies. The topics in this book include elaborative discussions on biomass feedstocks, biomass-to-liquid technologies (liquefaction, pyrolysis and transesterification), biomass-to-gas technologies (gasification), gas-to-liquid technologies (syngas fermentation and Fischer-Tropsch synthesis), co-processing technologies, fuel upgrading technologies (hydroprocessing and reforming), novel catalyst development for biorefining, biorefining process optimization, unit operations, reaction kinetics, artificial neural network, and much more. The book comprehensively discusses the strengths, weaknesses, opportunities and threats of notable biofuels (e.g., bio-oil, biocrude oil, biodiesel, bioethanol, biobutanol, bio-jet fuels, biohydrogen, biomethane, synthesis gas, hydrocarbon fuels, etc.). Addresses solutions for clean fuel, energy security, waste management, waste valorization, reduced greenhouse gas emissions, carbon capture and sequestration, circular economy and climate change mitigation. Includes applications of thermochemical conversion and reforming technologies for waste biomass to biofuels Covers current technologies in alternate fuels and chemicals production, a few of which include conversion technologies (i.e., liquefaction, gasification, pyrolysis, torrefaction, transesterification, organic transformation, carbon-carbon and carbon-heteroatom coupling reactions, oxidation, and reforming processes, etc.), hydrotreating technologies (i.e., hydrogenation, hydrodesulfurization, hydrodinitrogenation, hydrodearomatization and hydrodemetalization) and catalytic processes.

Biofuel Production Technologies: Critical Analysis for Sustainability

Biofuels and Bioenergy

The importance of biofuels in greening the transport sector in the future is unquestionable, given the limited available fossil energy resources, the environmental issues associated to the utilization of fossil fuels, and the increasing attention to security of supply. This comprehensive reference presents the latest technology in all aspects of biofuels production, processing, properties, raw materials, and related economic and environmental aspects. Presenting the application of methods and technology with minimum math and theory, it compiles a wide range of topics not usually covered in one single book. It discusses development of new catalysts, reactors, controllers, simulators, online analyzers, and waste minimization as well as design and operational aspects of processing units and financial and economic aspects. The book rounds out by describing properties, specifications, and quality of various biofuel products and new advances and trends towards future technology.

Copyright code: 389fb2f46290a5c5c9d2122cc781ade76